來自羅威·亞欽大學(xué)、馬克斯·普朗克化學(xué)能源轉(zhuǎn)換研究所和蘇黎世理工學(xué)院的研究人員已經(jīng)公布了合成燃料的開拓性進(jìn)步,這將徹底改變清潔運(yùn)輸。這項(xiàng)研究最近發(fā)表在《自然能源》這一重點(diǎn)研究能源的著名科學(xué)雜志上,它將"水費(fèi)"燃料作為可持續(xù)交通的一個(gè)有希望的解決辦法。
研究的題目是 "在使用氫基化費(fèi)氏燃料的重型運(yùn)輸中實(shí)現(xiàn)碳中和和清潔推進(jìn)。"
由優(yōu)化的烷-酒精混合物組成的氫化費(fèi)舍爾-特羅普希燃料,解決了當(dāng)前合成燃料面臨的幾個(gè)核心挑戰(zhàn)。這些先進(jìn)燃料旨在利用生物量或二氧化碳作為原料來結(jié)束碳循環(huán)。該流程采用可擴(kuò)展和成熟的技術(shù),確??沙掷m(xù)和通用的燃料生產(chǎn)方法。
這種創(chuàng)新的方法結(jié)合了兩種化學(xué)方法--費(fèi)舍爾-托普希合成法和使用合成氣體(一氧化碳和氫)的氫甲酸化法,這兩種方法已經(jīng)在工業(yè)中廣泛使用。氫甲酸化,又稱氧化合成或氧化過程,是一種化學(xué)反應(yīng),它涉及在烯烴(烯烴)中的碳碳雙鍵(c=c)中加入一個(gè)甲酸基(CHO)和一個(gè)氫原子以形成醛。這種工藝在化學(xué)工業(yè)中被廣泛用于生產(chǎn)醛,然后再進(jìn)一步加工成醇、酸或其他化學(xué)品。通過從生物質(zhì)、二氧化碳或廢物中獲取這種氣體,并利用可再生能源,生產(chǎn)過程完全沒有化石燃料。
HYFIT燃料生產(chǎn)流程將成熟技術(shù)納入新的設(shè)計(jì)框架,以便快速部署。由此產(chǎn)生的水適應(yīng)燃料相當(dāng)于或超過了以前的燃料的碳效率,特別是在基于生物的路線上。當(dāng)CO轉(zhuǎn)化率在95%以上時(shí),其產(chǎn)率高達(dá)83%,可與使用改進(jìn)的FT合成催化劑生產(chǎn)C2-C5醇的現(xiàn)行方法相比或更好。
實(shí)驗(yàn)結(jié)果表明,HyFIT燃料符合全球燃料標(biāo)準(zhǔn),并與現(xiàn)有的車輛基礎(chǔ)設(shè)施兼容。這種兼容性延伸到已建立的密封材料,使無縫整合到目前的車隊(duì),并為立即和廣泛采用鋪平道路。
對(duì)輕型商用車的測(cè)試表明,與傳統(tǒng)柴油相比,氫燃料燃燒過程中產(chǎn)生的顆粒和氧化氮要少得多。這標(biāo)志著在減少車輛廢氣排放和改善空氣質(zhì)量方面邁出了重要的一步。此外,對(duì)輪對(duì)輪對(duì)生命周期的評(píng)估表明,"太陽能燃料"可以實(shí)現(xiàn)凈零溫室氣體排放,使其成為電氣化的堅(jiān)實(shí)補(bǔ)充,特別是對(duì)于重型長(zhǎng)途運(yùn)輸而言。
這項(xiàng)工作是作為"超越2186燃料科學(xué)中心"的英才組的一部分進(jìn)行的,由德國(guó)研究基金會(huì)根據(jù)德國(guó)的卓越戰(zhàn)略提供資金(編號(hào):德國(guó)研究基金會(huì),DFG)。390919832;S.V.醫(yī)學(xué)碩士,B.M.H.也就是說,特別行政區(qū)以及水雷。)。這項(xiàng)研究是由碳酸鹽項(xiàng)目資助的。)由德國(guó)聯(lián)邦教育和研究部和瑞士聯(lián)邦能源局的"甜方案"提供,作為"方案"(A.B.)的一部分。)。
HyFiT synthetic fuels promise carbon-neutral transportation
Researchers from RWTH Aachen University, the Max Planck Institute for Chemical Energy Conversion, and ETH Zurich have unveiled pioneering advancements in synthetic fuels that could revolutionise clean transportation. The study, recently published in Nature Energy, a prominent scientific journal that focuses on research related to energy, presents HyFiT fuels as a promising solution for sustainable transportation.
The title of the study is “Towards Carbon-Neutral and Clean Propulsion in Heavy-Duty Transportation with Hydroformylated Fischer-Tropsch Fuels.”
Hydroformylated Fischer–Tropsch (HyFiT) fuels, composed of optimised alkane–alcohol blends, address several central challenges faced by current synthetic fuels. These advanced fuels are designed to close the carbon cycle by utilising biomass or carbon dioxide as raw materials. The process employs scalable and mature technologies, ensuring a sustainable and versatile approach to fuel production.
This innovative method combines two chemical processes—Fischer-Tropsch synthesis and hydroformylation—using synthesis gas (carbon monoxide and hydrogen), which are already widely used in industry. Hydroformylation, also known as oxo synthesis or oxo process, is a chemical reaction that involves the addition of a formyl group (CHO) and a hydrogen atom to a carbon-carbon double bond (C=C) in an olefin (alkene) to form an aldehyde. This process is widely used in the chemical industry to produce aldehydes, which can then be further processed into alcohols, acids, or other chemicals. By sourcing this gas from biomass, CO2, or waste and using renewable energy, the production process can be made completely free of fossil fuels.
The HyFiT fuel production process integrates mature technologies in a new design framework, allowing for quick deployment. The resulting HyFiT fuels match or exceed the carbon efficiency of previous FT fuels, especially for bio-based routes. The yields of up to 83% at CO conversions above 95% are comparable to or better than current methods for producing C2–C5 alcohols using modified FT synthesis catalysts.
Experimental results showed that HyFiT fuels comply with global fuel standards and are compatible with existing vehicle infrastructure. This compatibility extends to established sealing materials, enabling seamless integration into the current vehicle fleet and paving the way for immediate and broad adoption.
Tests on a light commercial vehicle revealed that HyFiT fuels produce significantly fewer particles and nitrogen oxides during combustion compared to conventional diesel. This marks a significant step towards reducing vehicular emissions and improving air quality. Furthermore, a well-to-wheel life cycle assessment demonstrated that HyFiT fuels can achieve net-zero greenhouse gas emissions, making them a solid complement to electrification, especially for heavy-duty, long-distance transport.
The work was performed as part of the Cluster of Excellence EXC2186 ‘The Fuel Science Center’, which is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy (no. 390919832; S.V., M.N., B.L., M.H., K.S., S.P. and W.L.). The study was funded from the Carbon2Chem project (03EK3042C; M.B.) by the German Federal Ministry of Education and Research (BMBF) and from the Swiss Federal Office of Energy’s SWEET programme as part of the project PATHFNDR (A.B.).
For more information and to read the complete study, click here.